Jetzt informieren
Digital studieren – Wir sind bereit
Präsenz- und Online-Studium, das waren bis zur Corona-Pandemie zwei getrennte Welten an der FH Kiel. Mit Start des Sommersemesters hat sich das jedoch schlagartig geändert: Die Lehre wurde innerhalb kürzester Zeit ins Internet verlagert. Mit verschiedenen Formaten kann das Studium nun auch erfolgreich von zu Hause aus absolviert werden.
Jetzt informieren

Kurzbeschreibung

The interdisciplinary Master's Program Data Science at FH Kiel teaches a comprehensive and versatile hands-on approach to Data Science. Students develop and apply a broad understanding of machine learning (incl. artificial neural networks), data management, protection, and security, stream processing, data analysis, visualization, and ethics. Module content is taught using real-world use cases and state-of-the-art technology. Courses teach necessary theoretical foundations but the main focus is on hands-on experience: All exams are practical tasks and projects. Next to various lecture modules, an application project is organized in cooperation with industry partners.

The program explicitly invites practitioners and students from various fields of study (extensive previous knowledge on programming or computer science is not required). Through interactive courses, we bring their different perspectives together and engage students in discussion and exchange of experiences and knowledge.

Letzte Bewertungen

4.9
Majd , 04.09.2024 - Data Science (M.Sc.)
4.9
Omid , 02.06.2024 - Data Science (M.Sc.)
4.2
Roman , 16.10.2023 - Data Science (M.Sc.)
4.3
Batuhan , 15.10.2023 - Data Science (M.Sc.)
4.5
I. , 22.04.2023 - Data Science (M.Sc.)

Studiengangdetails

Regelstudienzeit
3 Semester tooltip
Unterrichtssprachen
Englisch
Abschluss
Master of Science
Link zur Website
Inhalte

Semester 1

  • Cloud Computing
  • Data Management
  • Data Visualization and Visual Analytics
  • Machine Learning
  • Mathematics and Multivariate Statistics
  • Tools and Programming Languages for Data Science

Semester 2

  • Application Project
  • Big Data Technologies
  • Deep Learning
  • Elective Module
  • Social Media Analytics

Semester 3

  • Colloquium
  • Thesis
Voraussetzungen
  • access to the “Data Science” master’s program is granted to those who have completed a bachelor’s program with a grade of at least 2.5 and can also prove 30 cumulative credit points (ECTS) in the subject “Mathematics / Statistics” and “Computer Science” At least 10 credit points (according to ECTS) in the subject area "Mathematics/Statistics" and at least 10 credit points (according to ECTS) in the subject area "Computer Science" must be proven.
  • if the previous course comprised less than 210 credit points, but at least 180 credit points, the missing skills must be made up. As a rule, a total of 300 credit points should be achieved. Applicants will be informed of the skills to be made up and the latest possible time for their proof of achievement at the beginning of the course by the examination board.
  • evidence of English language skills that correspond to at least level B 2 of the Common European Framework of Reference for Languages. Example of accepted evidence can be found in Section 7 of the Examination Regulations for the master’s degree in Data Science.

Applicants with a bachelor’s degree from outside the Bologna Area (member of the European higher Education Area) also require proof of the following qualification:

  • a GRE with a minimum score of 55% in the Quantitative Reasoning part of the test.
Alle Details anzeigen Weniger Details anzeigen

Studienmodelle

Bewertung
100% Weiterempfehlung
Bewertungen
Weiterempfehlung
100%
Unterrichtssprachen
Englisch
Creditpoints
90
Studienbeginn
Sommer- & Wintersemester
Standorte
Kiel
Hinweise
  • Studies & Job: The program’s schedule is designed to allow flexible coordination and combination of studies and job (see below: Studies & Job).
  • Students with only 180 ECTS from their previous studies need to collect 30 ECTS from courses of their choice (e.g. language courses, courses from application domains, etc.). in addition to the 90 ECTS of the regular course program.
Link zur Website
Bewertung
100% Weiterempfehlung
Bewertungen
Weiterempfehlung
100%
Voraussetzungen
Contract with a cooperation partner of the Kiel University of Applied Sciences.
Unterrichtssprachen
Englisch
Creditpoints
90
Studienbeginn
Sommer- & Wintersemester
Standorte
Kiel
Link zur Website

The program is ideally suited for students with jobs. More than 70% of our students work part-time.

  • Lectures take place on only three days a week, leaving two days possible office attendance.
  • Lectures are distributed over twelve weeks per semester.
  • Exams take place mostly during the lecture period.
  • All compulsory lectures start every term, allowing for a flexible arrangement beyond the minimum three semesters.
  • The master thesis can be written in cooperation with industry partners, e.g. one’s employer.

Quelle: Fachhochschule Kiel

The program explicitly welcomes students from all over the world! The courses are held in English and all material is available in English. Exams and thesis can written in English (or optionally in German). Applicants will provide evidence of their command of English, e.g. through school certificates, TOEFL, Cambridge- ESOL, or other.

Quelle: Fachhochschule Kiel

Courses focus on relevant theoretical and methodical aspects as well as on their practical implementation. Starting in the first lessons, students will create various types of data science applications using their own notebooks. Thus graduates will have practical experience and the ability to implement data science solutions on their own.

A dedicated application project is part or the second term’s curriculum. Here students work in teams on actual real-world data science projects from our partners in industry. Industries include banking, energy, health, logistics, media, telecommunications, and more. The teams are supervised both by members of the respective companies as well as by their professors.

An overview of past application projects can be found here.

Quelle: Fachhochschule Kiel

The program explicitly invites students from all kinds of disciplines. Neither a comprehensive IT background nor knowledge about programming are required. Instead, applicants must have earned 30 ECTS in the fields of math/statistics and computer science (with at least 10 ECTS from each field). Relevant basics like math, programming, or databases are taught in the first semester of the curriculum as well as in a dedicated (non-mandatory) warm-up course.

Quelle: Fachhochschule Kiel

All information on application details and requirements can be found here.

For further information please contact:

Prof. Dr. Dirk Frosch-Wilke
dirk.frosch-wilke@fh-kiel.de
+49 (0)431 210 3516

Quelle: Fachhochschule Kiel

Videogalerie

Studienberater
Anna-Maria Utzolino
Leitung Studienberatung
Fachhochschule Kiel
+49 (0)431 210-1761

Du hast Fragen zum Studiengang? Deine Nachricht wird direkt an die Studienberatung weitergeleitet.

Bildergalerie

Jetzt bewerten

Wie zufrieden bist du mit deinem Studium? Bewerte jetzt deinen Studiengang und teile deine Erfahrung mit anderen.

Würdest du das Studium weiterempfehlen?

Allgemeines zum Studiengang

Hast du dich schon einmal gefragt, warum Streamingdienste dir immer genau die passenden Vorschläge ausspielen? Oder wie ein Algorithmus funktioniert, der frühzeitig den Verschleiß eines Bauteils erkennt? Wenn dich genau solche Fragen interessieren und du dir vorstellen kannst, diesen Themen auf den Grund zu gehen, ist ein Data Science Studium genau das Richtige für dich.

Data Science studieren

Social-Web

Bewertungen filtern

Praxisorientiert und nette Professoren

Data Science (M.Sc.)

4.9

Die Lerninhalte sind interessant, da neben der soliden theoretischen Grundlage besonders der Praxisbezug hervorgehoben wird. Die Professoren sind kompetent und ausgesprochen freundlich und unterstützen die Studierenden stets gerne. Zudem hatte ich das Glück, mein Studium mit engagierten und coolen Kommilitonen zu beginnen. Ich kann diesen Studiengang jedem empfehlen :).

Erfahrungen und Herausforderungen im Data Science

Data Science (M.Sc.)

4.9

Das Studium “Data Science” ist unglaublich interdisziplinär und kombiniert Elemente aus Mathematik, Statistik, Informatik und domänenspezifischem Wissen aus verschiedenen Bereichen. Während meines Studiums habe ich gelernt, große Datensätze zu analysieren, Muster zu erkennen und datenbasierte Entscheidungen zu treffen. Die Kursinhalte umfassen eine Vielzahl von Themen wie Datenanalyse, maschinelles Lernen, Datenbanken, Programmierung und Datenvisualisierungstechniken.

Schnellstart für Data Science für Alle

Data Science (M.Sc.)

4.2

Egal von welchen Bachelorstudiengang man belegt hat.
Hat man hier die Chance, seinen Fuß in Data Science zu fassen.
Es wird von Anfang an in gutem Tempo in 3 Semestern alles gelehrt.
Dennoch wird der Stoff verständlich vermittelt.
Der Fokus auf der Praxis ist bereits von Anfang an präsent, selbst erste Prüfungen sind praktisch.

Ein sehr einfacher und schneller Bewerbungsprozess

Data Science (M.Sc.)

4.3

Bevor ich mit der Bewerbung begann, habe ich sehr von den Informationen auf der Website der Schule profitiert. Saki Soroor gab in kürzester Zeit klare Antworten auf alle meine E-Mails und Fragen. Dank der Online-Sitzung konnten wir Fragen stellen, die uns beschäftigten. Dank des Vorprogrammierungskurses haben wir den Programmierkurs auf gewohnte Weise begonnen. Obwohl wir online teilnehmen mussten, waren die Professoren sehr verständnisvoll und teilten den Unterricht über Zoom mit...Erfahrungsbericht weiterlesen

Verteilung der Bewertungen

  • 4
  • 15
  • 2
  • 2 Sterne
    0
  • 1 Stern
    0

Bewertungsdetails

  • Studieninhalte
    4.7
  • Dozenten
    4.7
  • Lehrveranstaltungen
    4.6
  • Ausstattung
    4.5
  • Organisation
    4.5
  • Literaturzugang
    3.9
  • Digitales Studieren
    4.7
  • Gesamtbewertung
    4.5

Weiterempfehlungsrate

  • 100% empfehlen den Studiengang weiter
  • 0% empfehlen den Studiengang nicht weiter

Standorte

¹ Alle Preise ohne Gewähr
Quelle: Headerbilder: großes Bild Moritz Boll; kleines Bild: Matthias Pilch
Profil zuletzt aktualisiert: 06.2024